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ABSTRACT

. The effects of loops upon the conversion of a sequential
machine into a periodic machine are examined, and theorems and
corollaries derived which predict the allowable periods for non-trivial
periodic machine equivalents of sequential machinés. A periodization
procedure is developed and presented. The theorems and corollaries
are initially derived for minimal, strongly connected sequential
machines, and then extended to include non-minimal, non- strohgly

connected sequential machines, as well.



Preface

This report represents work begun in the summer of 1967. About the
time the work was complete, Gill and Flexer published results similar to
those presented herein. The approach and proofs differ sufficiently that we

thought it worthwhile to make our work available in this form.

This work was performed in part in partial fulfillment of the requirements

for Mr. King's Master of Science degree (Electrical Engineering).

The author's would like to express their appreciation to Professor

Kaprielian and Professor McGhee for their comments on this research.
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I, INTRODUCTION TO PERIODIC MACHINES

A. Preliminary Definitions

In this paper, we are concerned with a class of sequential
machines in which transitions occur at particular intervals, e.g.

synchronous (or clocked) sequential machines. The symbol M will

be used to designate such machines. The input states to the machine
M are denoted by the symbols Xi’ the intefnal states by Si and the
output symbols by Zi' The machine will be described by its state
‘diagram, and will be a minimal machine. The name given the com-
bination of input and internal states will be total state.

We shall further restrict the discussion, in general, to

strongly connected machines; that is, machines for which there exists
some input sequence Xl’ XZ’ P Xn which will cause the machine

to progress from any given Si to Sj’ where i may equal j. An example
of such a machine is shown in Figure la. Figure lb portrays a
machine which is not strongly connected; the input sequence X3, X5,
X6 (beginning in state SZ) will cause the machine to sequence to state
.85, from which there is no finite sequence causing a rcturn to S, .

In the later sections of this paper, certain of these restrictions

are examined, and the findings extended to cover those cases.



b) Non—Sirongly Connected Machine

Figure 1: Classcs of Sequential Machines



B. Periodic Mac}ﬁnes

A periodic machine is a machine which consists of a set of in-
pﬁt symbols, internal states, and output symbols, as defined pre-
viously. In addition, the periodic machine has a set of next-state
functions which vary with time. Functionally, a periodic machine
can be considered as shown in Figure 2, with input and output com-
binational logic blocks and a memory. The input and output logic
blocks vary in composition with time in a periodic manner; they may
be considered as being replaced with other blocks at ‘each clock.
Sequential machines whose next state functions do not vary with time
may be considered as a special class of periodic machines whose
period is 71.

The pfimary advantage of periodic machines lies in the poten-
tial of lesser memory capacity required. As an example, the con-
ventional fixed machine of Figure.3 requires 8 states, whereas the
equivalent periodic machine shown in Figure 4 requires only 2 states
at an& give;a time period. The saving in logical elements is demon-
strated by the implementations of the fixed and periodic machines
shown in Figures 5 and 6. The periodic representation assumes the
existence of a multi-phase clock system; this is discussed later in
this section.

In general, however, the lessening in memory capacity
achieved in the transformation from fixed to periodic machine is
accompanied by a like amount of memory required to remember in
which time period the periodic machine is operating. In addition, the

added complexity of the additional combinational circuitry required
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Figure 2: Generalized Periodic Machine



Figure 4: Periodic Equivalent of 'Machine in Figure 3
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may be a disadvantage.

' There are equipments in which some centralized timing source
already e%ists, such as a multi-phase clock system [5] or.a "p-time
counter'. The availability of such a source restricts the choice of
period of the periodic machine but does provide a '"free" mei’nory of
the clock period in which the periodic machine is operating, and thus
obviates the necessity for such a memory to be included in the
periodization. Additionally, Meisel (3] has shown that it is possible
to utilize variable-threshold threshold logic and an anahlog signal as
the timing memory. For such cases, the advantages mentioned above
for periodic machines may be obtained without the accompanying cost
of clock memory and logic. It is to those cases that the research
preceding this Thesis was directed.

The primary problem to be solved is the derivation of a pro-
cedure for the transformation of fixed machines to equivalent periodic
machines, if such a transformation will result in a saving of 1ogica1‘
elements.

One method whereby the transformation is particularly easy
.is where appropriate partitioning of the states can be accomplished
[1]. A partition is a collection of substates which are pairwise dis-
joint, and whose union is the entire collection of states of M. In this
case, the transition from one collection of substates {Si} to anofher
{Sj} is allowed, but to no other; the {Sj} must have a transition to
: {Sk} etc. When all states can be partitioned into such classes, and
ther_e' is a transition from the final partitioﬁ {Sn} to the initial parti-

tion {Si}, then closure is said to have occurred and the partitioning
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is complete and meaningful. Unfortunately, it is not always apparent
which partitioning of a given fixed machine will prove successful;
thié paper explores an alternate means of determining the feasibility
of conversion of a given fixed machine into a periodic machine, by

examination of the "loops" of the fixed machine.



II. ANALYSIS AND SYNTHESIS PROCEDURES

A. Nature of the Préblem

: Given a minimal, sti‘ongly connected, sequential machine M, it
is desired to determine under what conditions, if any, a corresponding
non-trivial periodic machine can be devised.

At the same time, it would be desirable to be able to specify
the period of such a machine, to suit the o-perational environment;
hence, there is a requirement for an alogrithmetic method for
achieving the transformation, if one exists.

Finally, ‘the creation of a method which minimizes the number
of states during aﬂy given period of the periodic machine should be

investigated.

B. Definitions

Prior to further discussion of the above topics, it is necessary
to formulate the following definitions.

Definition: If a conventional sequential machine is represented
-as an equivalent periodic machine, it will be said to have been period-
icized.

Definition: Let M be a sequential machine as previously
defined. If there exists an input sequence of length n; Xi, XZ" .. Xm

which, when M is initially in state S1 induces the sequence of slates

SZ’ S3, P Sl’ where none of the Si i=2, 3,..., n)are Sl;

n

then M contains a loop of period n.

9
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In particular, if there exists an input which does not change

the internal state of the machine, M has a loop of period 1.
| For example, Figure 7 indicates a machine With loops of
‘period 1, 3, and 4.v ‘ |

Definition: It is clear that any machine M, of m states:, can’
be periodicized into a machine of period T by du.plicating the m states
T times, and modifying the transitions accordingly;’ such a pefiodiza—
tion is termed trivial.

Figure 8 presents a two-state machine which ~is trivially
periodicized. From this definition, it may also be seen thé.t con-
ventional sequential machines can be said to be trivially periodic,
~with period 1,

Definition: In a periodic machine, the group of states which

may occur at a particular time is called the state set of that time.

C. Loop Dominance in Sequential Machines

In this section, the discussion is centered about strictly
periodic fnachines; the extension of the theorems derived to machines
containing a transient sct of states as well as a strictly periodic set
‘is discussed in a later section of this paper. We also do not in
general discuss nor show on state diagrams the outputs, to simplify
the diagrams.

Lemma 1: In a strongly connected periodic machine M, if a

state appears in cvery state set, then the periodic representation is
trivial,

Proofl; Consider a periodic machine in which state Si appears
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Figure 7: Sequential Machine with Multiple Loops
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in every state set. Since state Si of state sgt 3 which we denote by Si3
has at least one predecessor state ShZ and at least one successor state
Sj4’ they also must appear. in every state set. In addition, the
h2 and the successor state of Sj4

in every state set. By induction, every state must appear in every

predecessor state of S must appear
state set, since M is strongly connected, and the representation is
hence trivial.

Theorem 1l: Let M be a minimal, strongly connected scquen-
tial machine with a loop of period n. In any non-trivial periodic
machine Mp which is the equivalent in the p.sual sense to M, the
period T must bc a multiple of one of the prime factors of n.

Proof: (By contradiction) Assume that a non-trivial periodic
machine MP exists; with a period T which is not a multiple of one of
the prime factors of n, and yet is equivalent to M. Then, since M
and Mp are equivalént, any state Si of M in the loop of length n must

have an equivalent state in Mp' Let us denote that state S . Since M

%
has a loop of period n, there exists a sequence of inputs yielding a
sequence of distinct states Si’ Si+l’ e ey Si+(n-1)’ Si' si+l also has
an equivalent state in Mp’ S>i:<+l' After progressing along the succes-
sor states of Si exactly n-1 transitions, the state Si+(n- 1) is rcached.
In order for Mp to be equivalent to M, it must have equivalent states
for each of the n-1 transitions mentioned above, ending in a state

i % . i he iti f
equivalent to Si+(n- 1y’ Si+(n— 1) Slncc? the next transition o M
results in a transition from Si+(n— 1) to Si’ completing the loop of
period n, Mp must have a transition from S{‘ﬂn— 1) tp an Siv, but this S1

cannot be in the same state set as the first S:‘:lk,' by the hypothesis that
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M is not of-a period divisible by one of the prime factors of n. We
thus are forced to have two stlates Si‘ in Mp’ in different state sets.
Denote these by S‘?l"l for the beginning S1 and Sl'2 for the next S’i", etc.
We again traverse the loop of period n in M, beginning with Mp in
state S’l.‘:z. At the end of n transitions, another Sl must be chosen,
S’i:<3, since if the latest S’i:< were in the same state set as S’ik1 or S12’
T and n would be related by a common prime factor, which would be
a contradiction. Traversal of the loop continues in the above manner,
until an S1 is assigned to every state set. Since the1;e are T S’f states,
the machine is trivial, by Lemma 1. A contradiction is thus reached,
proving the Theorem.

Theorem 1 provides information regarding the periods which
may be used for non-trivial periodizations, but provides no informa-
tion regarding the relative merits of two or more periodizations which
satisfy Theorem 1. An added constraint, that T divide n, provides
this added information. The maximum saving in memory required
accrues when T is the greatest divisor of n [2]

' Example: Consider the fixed machine M shown in Figuré 9a.
Examination of theA machine reveals that the loop is of period 6. By
Theorem 1, any non-trivial periodic machine MP must have a period
T such that T and n have a common prime factor. Since 6 has prime
factors 3 and 2, T may thus be any multiple of those numbers. If we
choose T = 3, Mp is as shown in Figure 9b. We thus require only

2 bits of memory at any given time, as opposed to 6 in the fixed

machine M.
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a) Fixed Machine
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b) Periodic Machine

Figure 9: Demnonstration of Theorem 1
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If the addit:ional resiriction that T divide n is not followed, a
machine results which, although not trivial, is inferior to machines
satisfying the rule, inasmuch as no fewer storage states in any state

‘set are required, énd the number of transitions’ is larger. The
presence in the periodic machine of more than one state equivalent
to a state of the fixed machine also complicates the output logic.

Example: Consider the machine with loop of period 8 shown
in Figure 10. The periodicized machine with period T = 4 is shown
in Figure 1lla, and tlie machine with period T = 6 is shown in Figure

11b. The latter machine is clearly inferior to the T = 4 machine', but
is not ther trivial representation.

We next examine a machine M with loops n, i=1,2,..., r)
as shown in Figure 12, and its non-trivial periodic representation,

| M,

Corollary 1: MP is of period T, where T is a multiple of one
of the common prime factors of {ni}.

Proof: Machine M can be re~-drawn as shown in Figure 13,
and consists of r machines with common states. Any periodic repre-
sentation must satisfy individually the loops; hence, by Theorem 1,
for any loop n, (i=1, 2,..., r)the equivalent non-trivial periodic
machine Mp must have period T, where T is divided by one of the
prime factors of the n, i=1,2,..., r). Hence, T must be divided
by all the prime factors of the {ni'} .
| In addition, T must be divided by the summation of any set of

S

the .1, si ist he
the {nl} since a loop can consist of the sequence Sk'!-l’ k42

Sk+1’ Sk+2’ .+ . Thus, the total restriction on T is that it not only be



Figure 10: Eight-State Machine
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Implementation with T=4

a)

b) Implementation with T=6

Periodization Examples

Figure 11:



Figure 13: Multi-Machine Equivalent to Multi-ILoop Machine
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divided by the prirhc fact,ors_,_pf the { ni} , but it 'must also be divided
by their summation. In.’-oif_;‘i“e'r for this to be po§siE1e, the { n, } must
have a common fa.ctor,zg which implies a common prime divisor.

Again, sincefthe in. | must be related by a common prime
g R & : Yy p

::factor, the corollary hélow follows immediately:

Corollary 2: If-two, or more loops are relatively prime, no
non-trivial periodic representation exists.

Example: Let us éhoose a machine M as shown in Figure 14.
M has ny = 3 and n, = 2. Since these are relatively prime, the
corollary predicts that no non-~trivial periodic implementation exists.
Figure 15 depicts the various phases of periodization with T = 3,

In. Figure 15a, the n, loop has been periodicized. Observe,
however, that there must be a 82 to Sl transition. In Figure 15b,
a state S1 has bkeen added, but it must be added in state set 3, and |
corresponding states added to complete the other possible transitions
to and from'Sz. Again, h§wever; we must includg a Szto S1 transi-
tion, this time with Sy ’in stéte set 2. This inevitably leads to the
accompanying states as shown in Figure 1l5c, :«vhich can be recognized
as the trivial periodic representation, as predicted by the corollary.

The following corollary also is a direct conseciuence of the
"preceding theorem and corollaries.

Corollary 3:  The o:miy peri‘odic representation of a machine
with one or more 1§bps of period 1 is the trivial represecntation,

Exalnp}_e_;‘ To demonstrate Why this is necessarily a conse-

quence, consider the machine in Figure 16. The loops n; and n, are T

of period 1 and 4. Choosing T = 4, Figurc 17a depicts the periodic
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Figure 14; Machine with Loops of Period 2 and 3

Time
Period

Figure 15: Demonstration of Corollary 2



Figure 17: Demonstration of Corollary 3
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representation with loop n, periodicized. Note that; 1f the kl'oopi of V
period 1 did not exist, the periodization would be ‘conlplete. The
‘ex'.isterflce' of tile loop of period 1 requires that a t“ra‘msitio’n_Slto Sy
i_.exist between any state setAbut this in turn, implies that SZ’ ;53 and
S4 must also be in every state set, Which is thg trivial periodié
representation. The process is illustrated in Figui‘e 17b.

Utilizing the preceding theorem and its corollaries, we can
‘conclude under what conditions the ‘periodization of a given machine
is apt to be feasible, e.g., result in a saving of merﬂory capacity.
The coﬁditions are dominatedby the loops of the fixed maéhine, and
hence the procedure developed in the next section will utilize this

dominance,

- D. Synthesis of Periodic Machines

With the fundamental principles as contained in Theorem 1 and
its ’corollari’es, a systematic procedure for periodizing a given fixed
’méchine can be developed. Such a procedure involves the tabulation
of the 1oo.p‘1ei1gths and calculation of the common i)rime factor. If
the period of the periodic machine has been fixed by other cons’idera-
‘tions (e. g available clock mechanism, etc.), thén the p'rocredure Will?
quickly specify the allowable periods. If the pefiod has not been
; préviously; specified,‘ then the per:';o_d may be selécteci;, in general,
the g'féatest common divisor (gc;'d) should be chosen, to hlinimize the
merﬁo;y capacity required at any given time. The procedure de-
- scribed ab:oye_‘ is tagulated in Table:I, which forzhs a c:onven;lent aid

in periodizing machines of up to T = 8 and containing fewer than 6



24

I CALCULATION OF PERIOD

I. | LOOP PERIODS

2. | COMMON DIVISORS

3. | COMMON PRIME FACTORS

4. | ALLOWABLE PERIODS

I SYNTHESIS |

[O00000
000000
000000
[ O00000
000000
“lO00000
"10O00000
{00000 0

Table 1: Periodic Machine Synthesis
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states per state set. '
Example: Suppose we are given the problem of designing a

P

pattern detector which behaves as follows:

Sequence ‘ Output, ZlZZZ’3
X XXX 000

XX, XX, 110

XIXIXZXI 100 |

X1X2X1X1 010

XZXIXIXI 001

The Z outputs are pulses which occur during the last clock
vperiod of the sequence; Xy and X, are pulses such that either one or
the other occurs, the Xyt X, combination is prohibited.

The State Diagram for such a machine is shown in Figure 18.
Analysis by standard techniques [4] reveals that no states are
redundant. Four R-S Flip-flops plus supporting logic as shown in
Figure 20, are required for implementation.

For the periodization of the machine, all loops are of ’period 4,
so the period T of the equivalent periodic machine is chosen as 4.
The periodic machine is shown in Figure 19; its implementation
' requires but two flip-flops, and is shown in Figure 21. Again, it is
assumed for the periodic machine that a four phasc clock is available
in the system; if one must be generated, much of the savings in

clements is lost in the gencration of the multi-phase clock.

- E. E-tension to Non-Strongly Connected Machines

In order to extend the procedurcs described in an earlicr
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NOTE: OUTPUT=Z Z,Zg

IS 000 UNLESS
OTHERWISE
'NOTED.

t
t Xl
2 @
X
X1,000 y ‘ X, :
s Xa,no e e
XI N
; 2% ; f
2 ONCHON®

Figure 19; Periodic Machinc for Pattern Detector
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section of this thesis for application to no'njstr;)ng_ly conncected
machines, changes must be made to éompensate for the difference
in structure of the machine.

The typical non-strongly connected machine as shown in
Figure 22 functions as though it were several machines, with linkages
between machines, some of which are unilatc;ral. When a machine of
this type is to be periodicized, an aftefnpt to apply the procedure
developed earlier should be made. If, upon application of the proce-
dure, the conclusion that the machine is only triviall’y periodicizeable
is reached, then the machine must be re- é_xamined. If it consists of
several machines, weakly connected, some of which are periodicize-
able, then the periodization can be accomplished using the common
prime factor of some of the machines,. The periodization will be
trivial for the other maéhines.

Exafhgle: When the machine of Figure 22 is to be periodicized,
tabulation of the loops reveals two relatively prime factors, 3 and 2.
Since the buik of the machine consists of loops (V)f, period 3 or multiples
- thereof, periodization is attempted with T = 3, and is shown in Figure
23. The portion representing states Sy and 85 vof the fixed machine
can be seen to occur in every state éet, but the p‘,’eriodization is non-
trivial in the larger- sense, inasmuch as the other states. d‘o not occur
in every state set,

Hence, we see that the concepts evolved in the body of this
Thesis still apply, with modification, to non-trivial cormeéted

machines,
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Figure 22: Non-Strongly Connected Machine

Figure 23; Periodization of Non-Strongly Connccted Machine
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F. Extension to Machines Having a Transient Set of States

Inasmuch as machines having a transient set of states can be
considered a class of non-strongly connected machinés, 'it is expectéd
that the same mod.ified‘ procedures used to extend the periodization
of strongly connécted machines to the non- strongly connected case
could be utilized. This is indeed the case; we periodicize the
strongly-connected portion, and then include states equivalent to the
transient states, Such states are added in state sets such that the
transitions are compatible with the rest of the periodic machine.

If the transient states cannot be assigned to any particular state set
due to other system constraints, then the periodization will result
in a trivial periodic machine, since the transient state must then
appear in each state set,

Example: The machine in Figure 24 has a group of transient
states, Sl,- S2 and Ss. The renqa.inder of ‘the machine can be period-
icized with T = 3, as shown in Figure 25. When the transient states
are added, S1 and S2 are added in appropriate state sets. S2 must
be in a state set succeeding the state set to which Si is assigned, but
the state set succeeding that of SZ must contaiﬁ a state equivalent to
Sy This necessitates the addition of another {54 - S()} to acccom-
modate SZ'

Hence, not all machinés with'tral}sient states can be period-
icized in a meaningful manner, since the required tran;itiqns from
the transient states to the remainder of the machine may fc;rce |

additional sets of states to be added such that a trivial or near-trivial

machine results, A good "rule of thumb" is to count mod T, the
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Figure 24: Machine with Transient States

Figure 25; Periodization of Machine with Transicnt States
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number of transitions from the beginning transient state to some
_arbitrary state of the strongly connected portion of the machine. If
:the count differs along the various transient paths, additional groups

of states will be necessary when the machine is periodicize'd.

jG. Extension to Non-Minimal Machines

When the extension of the synthesis techniques described in
the previous sections to non-minimal machines is investigated, the
natul-'e of the minimization précess must be ;:onsidéred. In order
;for two states Si and Sj of a machine to be equivalent, equivalent;
sequences of states and corresponding qutputs must result from any
permitted sequence of inputs applied to the machine when starting in
‘either'Si or Sj' Viewed in the terminology developed in this Thesis,
this equivalence corresponds to the requirement that the loop lengths
of loops containing equivalent states be identical, and have common
start and finish points.

Example: The machine of Figure 26 contains two states, 5,
and S3, \?xlzhich are equivalent. The sequence of states SZ’ Sl’ _S4 has
an equivalent sequence including S3, i. e, SZ’ S3, S4. The minimized
‘four state machine has only one path between S2 and S4.

Since equivalence of states thus can be said to imply equiv-
alence of loop lengths, the thecorem and corollaries developed previ-
ously can be extended to non-minimal machines. A loop of length n
in a non-minimal machine must still exist in the minimized version,

and thus the restrictions imnposed upon the periodization process by

the existencce of that loop is independent of the condition of minimality.'



Figure 26: Non-Minimal Machine
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" Thus, when a2 non-minimal machine is ;:onsidered for period-
.ization, the same procedures may be utilized. The number of states

in the periodic machine which results may be non-minimal, however.



III, CONCLUSIONS

The foundations upon which practical design of periodic
‘machines depends have been investigated, and theorems derived
which quickly and accurately predict the outcome from periodization
of a fixed machine.

Machines with oﬁe or more loops of period 1 were found to b;e
poor candidates for periodization, inasmuch as the oh}.y periodization
is the trivial one. .Machines where the periods of the loops are
relatively prime are likewise poor candida‘t_es.

In summary, the prerequisites for useful periodization are:

1) Availability of timing source

2) Loops of machine compatible with available timing

3) No loops o-f period 1

4) No multiple loops having relatively prime factors
Under these circumstances, a substanti'al saving of logical elements
can be achieved,

It appecars that further research is warranted into minimiza-
tion techniques suitable fqr the periodization process. For example,
if the state diagram shown in Figure 27 had been chosen for the
periodization of the pattern detector discusscd previously, a more
complicated implementation would have resulted. This is left as a

futurc research topic.
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Figure 27: Alternate Pattern Detector State Diagram
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